Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.593
Filtrar
1.
J Environ Manage ; 357: 120723, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565028

RESUMO

Due to increased pesticide usage in agriculture, a significant concentration of pesticides is reported in the environment that can directly impact humans, aquatic flora, and fauna. Utilizing microalgae-based systems for pesticide removal is becoming more popular because of their environmentally friendly nature, ability to degrade pesticide molecules into simpler, nontoxic molecules, and cost-effectiveness of the technology. Thus, this review focused on the efficiency, mechanisms, and factors governing pesticide removal using microalgae-based systems and their effect on microalgal metabolism. A wide range of pesticides, like atrazine, cypermethrin, malathion, trichlorfon, thiacloprid, etc., can be effectively removed by different microalgal strains. Some species of Chlorella, Chlamydomonas, Scenedesmus, Nostoc, etc., are documented for >90% removal of different pesticides, mainly through the biodegradation mechanism. The antioxidant enzymes such as ascorbate peroxidase, superoxide dismutase, and catalase, as well as the complex structure of microalgae cell walls, are mainly involved in eliminating pesticides and are also crucial for the defense mechanism of microalgae against reactive oxygen species. However, higher pesticide concentrations may alter the biochemical composition and gene expression associated with microalgal growth and metabolism, which may vary depending on the type of strain, the pesticide type, and the concentration. The final section of this review discussed the challenges and prospects of how microalgae can become a successful tool to remediate pesticides.


Assuntos
Chlorella , Microalgas , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/química , Microalgas/metabolismo , Poluentes Químicos da Água/química , Malation/metabolismo , Malation/farmacologia
2.
Food Chem ; 446: 138842, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428076

RESUMO

Malathion causes a serious threat to human health due to its widespread use in the environment. Herein, a novel and stable smartphone-integrated colorimetric biosensor for malathion detection is firstly established based on aptamer-enhanced laccase-mimicking activity. The results indicate that the M17-F aptamer can increase the affinity of Ag2O nanoparticles to the substrate 2,4-dichlorophenol and enhance their laccase-mimicking activity. Thus, abundant semiquinone radicals are produced in the catalytic system, which are combined with chromogenic agent to generate dark red products. The corresponding RGB values for the colour change of the solution can be easily obtained using smartphones, which is used for the rapid detection of malathion. The established biosensor for malathion has a limit of detection as low as 5.85 nmol·L-1, and displays good selectivity for other competitive pesticides. Moreover, further studies have verified the applicability of the biosensor in actual samples, indicating that it may have the potential for application in malathion detection in food.


Assuntos
Técnicas Biossensoriais , Praguicidas , Humanos , Malation , Lacase , Colorimetria/métodos , Praguicidas/análise , Oligonucleotídeos , Técnicas Biossensoriais/métodos , Limite de Detecção
3.
Sci Total Environ ; 924: 171512, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453081

RESUMO

The presence of pesticide residues in aquatic environments poses a significant threat to both aquatic ecosystems and human health. The presence of these residues can result in significant harm to aquatic ecosystems and can negatively impact the health of aquatic organisms. Consequently, this issue requires urgent attention and effective measures to mitigate its impact. However, developing sensitive and rapid detection methods remains a challenge. In this study, an all-in-one test strip, which integrated bioenzymes, nanoenzymes, and a chromogen, was developed in combination with an enzyme labeling instrument for a highly sensitive and convenient sensing of malathion residues. The oxidase activity of heme chloride (Hemin) in the strip can catalyze the oxidation of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue-colored oxide. Simultaneously, the alkaline phosphatase (ALP) present in the strip can break down l-ascorbic acid-2-phosphate to produce ascorbic acid (AA). This AA then acts to reduce the oxidized form of TMB, turning it into a colorless substance and leading to the disappearance of its fluorescent signal. In the presence of a pesticide, the activity of ALP is inhibited and formation of AA is blocked, thereby preventing the reduction of oxidized TMB and producing a colored signal. According to this principle, the integrated test strip detected the target pesticide with high performance as per the optical density value determined via an enzyme marker. The detection limit of the test strip was 0.209 ng/mL with good sensitivity. The method was used for detecting malathion in actual river water samples, and the recoveries were in the range of 93.53 %-96.87 %. The newly devised technique effectively identified malathion in samples of natural water. This research has introduced a novel approach for the precise and convenient surveillance of pesticide remnants. Additionally, these discoveries could inspire the advancement of proficient multi-enzyme detection systems.


Assuntos
Malation , Praguicidas , Humanos , Ecossistema , Peróxido de Hidrogênio , Limite de Detecção , Corantes/química , Fosfatase Alcalina , Água
4.
Sci Total Environ ; 922: 171379, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431165

RESUMO

Several studies highlighted the complexity of mixing pesticides present in Amazonian aquatic environments today. There is evidence that indicates that ongoing climate change can alter the pattern of pesticide use, increasing the concentration and frequency of pesticide applications. It is known that the combination of thermal and chemical stress can induce interactive effects in aquatic biota, which accentuates cell and molecular damage. However, considering that the effects of climate change go beyond the increase in temperature the objective of this study was to evaluate the effect of climate change scenarios proposed by 6 th IPCC report and a mixture of pesticides on the tambaqui (Colossoma macropomum). The hypothesis of this study is that the negative effects will be accentuated by the combination of an extreme climate changes scenario and a mixture of pesticides. To test the hypothesis, juvenile tambaqui were exposed to a combination of four pesticides (chlorpyrifos, malathion, carbendazim and atrazine) in two scenarios, one that simulates current environmental conditions and another that predicted the environmental scenario for the year 2100. Fish were subjected to the experimental conditions for 96 h. At the end of the experiment, samples of blood, gills, liver, brain, and muscle were obtained for hematological, genotoxic, biochemical, and histopathological analyses. The results demonstrate that environmentally realistic concentrations of pesticides, when mixed, can alter the biochemical responses of tambaqui. The extreme scenario promotes hematological adjustments, but impairs branchial antioxidant enzymes. There is an interaction between the mixture of pesticides and the extreme scenario, accentuating liver tissue damage, which demonstrates that even increased activity of antioxidant and biotransformation enzymes were not sufficient to prevent liver damage.


Assuntos
Caraciformes , Praguicidas , Animais , Praguicidas/toxicidade , Mudança Climática , Antioxidantes/metabolismo , Caraciformes/metabolismo , Malation
5.
Pestic Biochem Physiol ; 199: 105763, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458663

RESUMO

The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.


Assuntos
Inseticidas , Ivermectina/análogos & derivados , Tephritidae , Animais , Inseticidas/farmacologia , Malation/toxicidade , Ciclo-Oxigenase 2 , Resistência a Inseticidas/genética , Tephritidae/genética
6.
J Agric Food Chem ; 72(8): 4376-4383, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363824

RESUMO

Bactrocera dorsalis is a highly invasive species and is one of the most destructive agricultural pests worldwide. Organophosphorus insecticides have been widely and chronically used to control it, leading to the escalating development of resistance. Recently, odorant binding proteins (OBPs) have been found to play a role in reducing insecticide susceptibility. In this study, we used RT-qPCR to measure the expression levels of four highly expressed OBP genes in the legs of B. dorsalis at different developmental stages and observed the effect of malathion exposure on their expression patterns. The results showed that OBP28a-2 had a high expression level in 5 day old adults of B. dorsalis, and its expression increased after exposure to malathion. By CRISPR/Cas9 mutagenesis, we generated OBP28a-2-/- null mutants and found that they were more susceptible to malathion than wild-type adults. Furthermore, in vitro direct affinity assays confirmed that OBP28a-2 has a strong affinity for malathion, suggesting that it plays a role in reducing the susceptibility of B. dorsalis to malathion. Our findings enriched our understanding of the function of OBPs. The results highlighted the potential role of OBPs as buffering proteins that help insects survive exposure to insecticides.


Assuntos
Inseticidas , Tephritidae , Animais , Malation/farmacologia , Malation/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Odorantes , Tephritidae/genética , Tephritidae/metabolismo
7.
Environ Sci Pollut Res Int ; 31(11): 16832-16845, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326681

RESUMO

Malathion, an extensively used organophosphorus pesticide, poses a high potential risk of toxicity to humans and the environment. Shewanella (S.) oneidensis MR-1 has been proposed as a strain with excellent bioremediation capabilities, capable of efficiently removing a wide range of hard-to-degrade pollutants. However, the physiological and biochemical response of S. oneidensis MR-1 to malathion is unknown. Therefore, this study aimed to examine how S. oneidensis MR-1 responds physiologically and biochemically to malathion while also investigating the biodegradation properties of the pesticide. The results showed that the 7-day degradation rates of S. oneidensis MR-1 were 84.1, 91.6, and 94.0% at malathion concentrations of 10, 20, and 30 mg/L, respectively. As the concentration of malathion increased, superoxide dismutase and catalase activities were inhibited, leading to a significant rise in malondialdehyde content. This outcome can be attributed to the excessive production of reactive oxygen species (ROS) triggered by malathion stress. In addition, ROS production stimulates the secretion of soluble polysaccharides, which alleviates oxidative stress caused by malathion. Malathion-induced oxidative damage further exacerbated the changes in the cellular properties of S. oneidensis MR-1. During the initial stages of degradation, the cell density and total intracellular protein increased significantly with increasing malathion exposure. This can be attributed to the remarkable resistance of S. oneidensis MR-1 to malathion. Based on scanning electron microscopy observations, continuous exposure to contaminants led to a reduction in biomass and protein content, resulting in reduced cell activity and ultimately leading to cell rupture. In addition, this was accompanied by a decrease in Na+/K+- ATPase and Ca2+/Mg2+-ATPase levels, suggesting that malathion-mediated oxidative stress interfered with energy metabolism in S. oneidensis MR-1. The findings of this study provide new insights into the environmental risks associated with organophosphorus pesticides, specifically malathion, and their potential for bioremediation.


Assuntos
Praguicidas , Shewanella , Humanos , Biodegradação Ambiental , Malation , Compostos Organofosforados/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Praguicidas/metabolismo , Estresse Oxidativo , Shewanella/metabolismo , Adenosina Trifosfatases/metabolismo
8.
Environ Sci Pollut Res Int ; 31(14): 21721-21736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393561

RESUMO

Malathion serves as a pivotal pesticide in agriculture and the management of the Aedes aegypti mosquito. Despite its widespread use, there is a notable absence of studies elucidating the mechanisms through which malathion may affect the female reproductive system. Consequently, the objective of this investigation was to assess whether exposing juvenile female rats to low doses of malathion during the juvenile and peripubertal periods could compromise pubertal onset, estradiol levels, and the integrity of the ovaries and uterus while also examining the underlying mechanisms of damage. To achieve this, thirty juvenile female rats were subjected to either a vehicle or malathion (10 mg/kg or 50 mg/kg) between postnatal days 22 and 60, with subsequent verification of pubertal onset. Upon completion of the exposure period, blood samples were collected for estradiol assessment. The ovaries and uterus were then examined to evaluate histological integrity, oxidative stress, and the expression of genes associated with cell proliferation, antiapoptotic responses, and endocrine pathways. Although estradiol levels and pubertal onset remained unaffected, exposure to malathion compromised the integrity and morphometry of the ovaries and uterus. This was evidenced by altered oxidative profiles and changes in the expression of genes regulating the cell cycle, anti-apoptotic processes, and endocrine pathways. Our findings underscore the role of malathion in inducing cell proliferation, promoting cell survival, and causing oxidative damage to the female reproductive system in rats exposed during peripubertal periods.


Assuntos
Inseticidas , Malation , Ratos , Feminino , Animais , Malation/toxicidade , Inseticidas/toxicidade , Ovário , Estresse Oxidativo , Estradiol , Útero , Expressão Gênica
9.
PLoS One ; 19(2): e0296046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346028

RESUMO

Sporadic outbreaks of human cases of West Nile virus (WNV), primarily vectored by Culex quinquefasciatus Say in suburban and urban areas, have been reported since introduction of the virus into Florida in 2001. Miami-Dade County, Florida is part of one of the largest metropolitan areas in the United States, supports Cx. quinquefasciatus year-round, and recently experienced over 60 human cases of WNV during one outbreak. To facilitate more effective integrated vector management and public health protection, we used the Centers for Disease Control and Prevention (CDC) bottle bioassay method to evaluate the susceptibility of adult Cx. quinquefasciatus collected from 29 locations throughout Miami-Dade County to pyrethroid and organophosphate adulticide active ingredients (AIs) used by Miami-Dade County Mosquito Control. We also determined the frequency of the 1014 knockdown resistance (kdr) mutation for Cx. quinquefasciatus from a subset of 17 locations. We detected resistance to two pyrethroid AIs in all tested locations (permethrin: 27 locations, deltamethrin: 28 locations). The 1014F allele was widely distributed throughout all 17 locations sampled; however, 29.4% of these locations lacked 1014F homozygotes even though phenotypic pyrethroid resistance was present. Organophosphate resistance was more variable; 20.7% of the locations tested were susceptible to malathion, and 33.3% of the populations were susceptible to naled. We subsequently conducted a field trial of ReMoa Tri, a recently approved multiple AI adulticide formulation labelled for resistant mosquitoes, against a mixed location field population of Miami-Dade Cx. quinquefasciatus. Average 24-hr mortality was 65.1 ± 7.2% and 48-hr mortality increased to 85.3 ± 9.1%, indicating good control of these resistant Cx. quinquefasciatus. This current study shows that insecticide resistance is common in local Cx. quinquefasciatus but effective options are available to maintain control during active disease transmission in Miami-Dade County.


Assuntos
Culex , Inseticidas , Piretrinas , Animais , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Culex/genética , Controle de Mosquitos/métodos , Malation
10.
J Econ Entomol ; 117(2): 609-617, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284646

RESUMO

The clover seed weevil, Tychius picirostris Fabricius, a serious pest of white clover, Trifolium repens L., grown for seed in western Oregon, causing feeding damage to flowers and developing seeds. Since 2017, white clover seed producers have anecdotally reported T. picirostris control failures using foliar pyrethroid insecticide applications. This mode of action (MoA) is an important chemical control option for T. picirostris management. To evaluate insecticide resistance selection to pyrethroids (bifenthrin) and other MoAs labeled for T. picirostris management (malathion and chlorantraniliprole), adult populations were collected from 8 commercial white clover grown for seed fields in the Willamette Valley, OR, in 2022 and 2023. Among collected Oregon populations, very high resistance ratios (RR50 = 178.00-725.67) were observed to technical grade bifenthrin and low to high resistance ratios (RR50 = 7.80-32.80) to malathion in surface contact assays compared to a susceptible Canadian field population. Moreover, >2.73 times the labeled rate of formulated product containing bifenthrin as the sole MoA was required to kill >50% of T. picirostris in topical assays. Synergistic assays with a mixed-function oxidase inhibitor, an esterase inhibitor, and a glutathione-S-transferase inhibitor revealed phase I and II detoxification enzymes are present in Oregon T. picirostris populations and confer metabolic resistance to bifenthrin. This is the first report of T. picirostris insecticide resistance selection to pyrethroid and organophosphate insecticides. Results will inform continued monitoring and insecticide resistance management strategies to slow the evolution of T. picirostris insecticide resistance selection in Oregon's white clover seed production.


Assuntos
Besouros , Inseticidas , Piretrinas , Trifolium , Gorgulhos , Animais , Malation , Oregon , Canadá , Piretrinas/farmacologia , Inseticidas/farmacologia , Resistência a Inseticidas , Produtos Agrícolas
11.
Sci Total Environ ; 913: 169805, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181956

RESUMO

The ecological risks posed by widespread organophosphorus pesticide (OPs) pollution in the surface waters of China remain unclear. In this study, species sensitivity distribution (SSD) parametric statistical approaches were coupled with fully acute and chronic toxicity data to fit the sensitivity distributions of different aquatic species to five typical OPs: dimethoate, malathion, parathion-methyl, trichlorfon, and dichlorvos. Crustaceans exhibit the highest sensitivity to OPs, whereas algae are the least sensitive. The acute hazardous concentrations that affected 5 % of the species (HC5) were 0.112, 0.001, 0.001, 0.001, and 0.001 mg/L for dimethoate, malathion, parathion-methyl, trichlorfon, and dichlorvos, respectively, whereas their chronic HC5 values were 0.004, 0.004, 0.053, 0.001, and 0.0005 mg/L, respectively. Hence, dichlorvos is highly toxic and poses greater risk to non-target aquatic species. The evaluation data revealed varying geographical distribution characteristics of the ecological risks from OPs in 15 freshwater aquatic systems across different regions of China. Dichlorvos posed the highest risk in the basins of Zhejiang and Guangdong Provinces, with the highest chronic Risk Quotient (RQ) and Hazard Index (HI) at 9.34 and 9.92, respectively. This is much higher than what was collected and evaluated for foreign rivers (the highest chronic RQ and HI in foreign rivers were 1.65 and 2.24, respectively). Thus, dichlorvos in the surface waters of China poses a substantial ecological risk to aquatic organisms, and may endanger human health.


Assuntos
Metil Paration , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/toxicidade , Praguicidas/análise , Compostos Organofosforados/toxicidade , Diclorvós , Malation , Dimetoato , Água , Triclorfon , Organismos Aquáticos , China , Medição de Risco , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
12.
Parasit Vectors ; 17(1): 18, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216956

RESUMO

BACKGROUND: The unplanned and intensified use of insecticides to control mosquito-borne diseases has led to an upsurge of resistance to commonly used insecticides. Aedes aegypti, the main vector of dengue, chikungunya, and Zika virus, is primarily controlled through the application of adulticides (pyrethroid insecticides) and larvicides (temephos). Fine spatial-scale analysis of resistance may reveal important resistance-related patterns, and the application of mathematical models to determine the phenotypic resistance status lessens the cost and usage of resources, thus resulting in an enhanced and successful control program. METHODS: The phenotypic resistance for permethrin, deltamethrin, and malathion was monitored in the Ae. aegypti populations using the World Health Organization (WHO) adult bioassay method. Mosquitoes' resistance to permethrin and deltamethrin was evaluated for the commonly occurring base substitutions in the voltage-gated sodium channel (vgsc) gene. Rational functions were used to determine the relationship between the kdr alleles and the phenotypic resistant percentage of Ae. aegypti in Sri Lanka. RESULTS: The results of the bioassays revealed highly resistant Ae. aegypti populations for the two pyrethroid insecticides (permethrin and deltamethrin) tested. All populations were susceptible to 5% malathion insecticide. The study also revealed high frequencies of C1534 and G1016 in all the populations studied. The highest haplotype frequency was detected for the haplotype CC/VV, followed by FC/VV and CC/VG. Of the seven models obtained, this study suggests the prediction models using rational approximation considering the C allele frequencies and the total of C, G, and P allele frequencies and phenotypic resistance as the best fits for the area concerned. CONCLUSIONS: This is the first study to our knowledge to provide a model to predict phenotypic resistance using rational functions considering kdr alleles. The flexible nature of the rational functions has revealed the most suitable association among them. Thus, a general evaluation of kdr alleles prior to insecticide applications would unveil the phenotypic resistance percentage of the wild mosquito population. A site-specific strategy is recommended for monitoring resistance with a mathematical approach and management of insecticide applications for the vector population.


Assuntos
Aedes , Inseticidas , Nitrilas , Piretrinas , Infecção por Zika virus , Zika virus , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Aedes/genética , Malation/farmacologia , Permetrina , Sri Lanka , Mosquitos Vetores/genética , Piretrinas/farmacologia , Mutação
13.
Artigo em Inglês | MEDLINE | ID: mdl-38244824

RESUMO

The present investigation aimed to evaluate the long-term effects of malathion (Elathion®) at two sub-lethal concentrations (0.36 and 1.84 mgL-1) for 45 days after the determination of 96 h-LC50 value (18.35 mgL-1) in a commercially important aquaculture species, Labeo rohita by assaying multiple biomarker approaches. Total erythrocyte count (TEC), and haemoglobulin count (Hb) were found to be decreased while total leucocyte counts (TLC) were increased (p < 0.05) in malathion-intoxicated fish. Malathion exposure significantly reduced (p < 0.05) serum protein levels while significantly increased (p < 0.05) blood glucose levels. RNA activity in muscle was reduced (p < 0.05) while DNA activity increased (p < 0.05) in malathion-intoxicated fish. Acid phosphatase (ACP) activities in the brain; lacate dehydrogenase (LDH) activities in brain and liver were increased (p < 0.05), while alkaline phosphatase (ALP) activities in the brain; succinate dehydrogenase (SDH) activities in the brain, liver and kidney; acetylcholine esterase (AChE) activity in the brain; and ATPase activities in the brain, liver and kidney were reduced (p < 0.05) in comparison to control. Thus, the alteration in studied biomarkers was in a concentation-time dependent manner; however, it was more pronounced at the higher concentration at 45 days of exposure. The alteration in biomarker activity is probably a defensive mechanism/ adaptive response of fish to overcome the stress induced by malathion, which is a novel insight and possible impact on L.rohita. Our findings suggest malathion-induced stress, therefore, the use of malathion needs to be regulated to safeguard aquatic animals including fish and human health.


Assuntos
Cyprinidae , Malation , Animais , Humanos , Malation/toxicidade , Cyprinidae/metabolismo , Dose Letal Mediana , Água Doce , Biomarcadores/metabolismo
14.
Environ Sci Pollut Res Int ; 31(1): 1403-1418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038914

RESUMO

Neurodegenerative disorders are a debilitating and persistent threat to the global elderly population, carrying grim outcomes. Their genesis is often multifactorial, with a history of prior exposure to xenobiotics such as pesticides, heavy metals, enviornmental pollutants, ionizing radiation etc,. A holistic molecular insight into their mechanistic induction upon single or combinatorial exposure to different toxicants is still unclear. In the present study, one-month-old C57BL/6 male mice were administered orally with malathion (50 mg/kg body wt. for 14 days) and single whole-body radiation (0.5 Gy) on the 8th day. Post-treatment, behavioural assays for exploratory behaviour, memory, and learning were performed. After sacrifice, brains were collected for histology, biochemical assays, and transcriptomic analysis. Transcriptomic analysis revealed several altered processes like synaptic transmission and plasticity, neuronal survival, proliferation, and death. Signalling pathways like MAPK, PI3K-Akt, Apelin, NF-κB, cAMP, Notch etc., and pathways related to neurodegenerative diseases were altered. Increased astrogliosis was observed in the radiation and coexposure groups, with significant neuronal cell death and a reduction in the expression of NeuN. Sholl analysis, dendritic arborization and spine density studies revealed decreased total apical neuronal path length and dendritic spine density. Reduced levels of the antioxidants GST and GSH and acetylcholinesterase enzyme activity were also detected. However, no changes were seen in exploratory behaviour or learning and memory post-treatment. Thus, explicating the molecular mechanisms behind malathion and radiation can provide novel insights into external factor-driven neurotoxicity and neurodegenerative pathogenesis.


Assuntos
Acetilcolinesterase , Malation , Idoso , Humanos , Animais , Masculino , Camundongos , Lactente , Malation/toxicidade , Fosfatidilinositol 3-Quinases , Camundongos Endogâmicos C57BL , Encéfalo
15.
Br J Dermatol ; 190(2): 163-173, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37625798

RESUMO

BACKGROUND: Treatment failure is considered to be an important factor in relation to the increase in scabies incidence over the last decade. However, the regional and temporal differences, in addition to the predictors of therapy failure, are unclear. OBJECTIVES: We aimed to conduct a systematic review of the prevalence of treatment failure in patients with scabies and investigation of associated factors. METHODS: We searched MEDLINE, EMBASE, CINAHL, Web of Science, Scopus, Global Health and the Cochrane Central Register of Controlled Trials from inception to August 2021 for randomized and quasi-randomized trials, in addition to observational studies that enrolled children or adults diagnosed with confirmed or clinical scabies treated with permethrin, ivermectin, crotamiton, benzyl benzoate, malathion, sulfur or lindane, and measured treatment failure or factors associated with treatment failure. We performed a random effects meta-analysis for all outcomes reported by at least two studies. RESULTS: A total of 147 studies were eligible for inclusion in the systematic review. The overall prevalence of treatment failure was 15.2% [95% confidence interval (CI) 12.9-17.6; I2 = 95.3%, moderate-certainty evidence] with regional differences between World Health Organization regions (P = 0.003) being highest in the Western Pacific region (26.9%, 95% CI 14.5-41.2). Oral ivermectin (11.8%, 95% CI 8.4-15.4), topical ivermectin (9.3%, 95% CI 5.1-14.3) and permethrin (10.8%, 95% CI 7.5-14.5) had relatively lower failure prevalence compared with the overall prevalence. Failure prevalence was lower in patients treated with two doses of oral ivermectin (7.1%, 95% CI 3.1-12.3) compared with those treated with one dose (15.2%, 95% CI 10.8-20.2; P = 0.021). Overall and permethrin treatment failure prevalence in the included studies (1983-2021) increased by 0.27% and 0.58% per year, respectively. Only three studies conducted a multivariable risk factor analysis; no studies assessed resistance. CONCLUSIONS: A second dose of ivermectin showed lower failure prevalence than single-dose ivermectin, which should be considered in all guidelines. The increase in treatment failure over time hints at decreasing mite susceptibility for several drugs, but reasons for failure are rarely assessed. Ideally, scabicide susceptibility testing should be implemented in future studies.


Assuntos
Escabiose , Adulto , Criança , Humanos , Escabiose/tratamento farmacológico , Ivermectina , Permetrina/uso terapêutico , Hexaclorocicloexano/uso terapêutico , Malation/uso terapêutico , Administração Oral
16.
Food Chem ; 438: 138068, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38011790

RESUMO

Sensitive and rapid detection of pesticide residues in food is essential for human safety. A ratiometric imprinted fluorescence sensor N-CDs@Eu-MOF@MIP (BR@MIP) was constructed to sensitively detect malathion (Mal). Europium-based metal organic frameworks (Eu-MOF) were used as supporters to improve the sensitivity of the BR@MIP. N-doped carbon dots (N-CDs) were used as fluorescent source to produce fluorescent signal. A linear relationship between the concentration of Mal and the fluorescence response of the sensor was found in the Mal concentration range of 1-10 µM with a limit of detection (LOD) of 0.05 µM. Furthermore, the sensor was successfully applied for the detection of Mal in lettuce, tap water, and soil samples, with recoveries in the range of 93.0 % - 99.3 %. Additionally, smartphone-based sensors were used to detect Mal in simulated real samples. Thus, the construction of ratiometric imprinted fluorescence sensor has provided a good strategy for the detection of Mal.


Assuntos
Estruturas Metalorgânicas , Impressão Molecular , Pontos Quânticos , Humanos , Malation , Pontos Quânticos/química , Carbono/química , Limite de Detecção , Corantes Fluorescentes/química
17.
Pest Manag Sci ; 80(4): 2188-2198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158650

RESUMO

BACKGROUND: The stingless bee, Trigona spinipes, is an important pollinator of numerous native and cultivated plants. Trigona spinipes populations can be negatively impacted by insecticides commonly used for pest control in crops. However, this species has been neglected in toxicological studies. Here we observed the effects of seven insecticides on the survival of bees that had fed directly on insecticide-contaminated food sources or received insecticides via trophallactic exchanges between nestmates. The effects of insecticides on flight behavior were also determined for the compounds considered to be of low toxicity. RESULTS: Imidacloprid, spinosad and malathion were categorized as highly toxic to T. spinipes, whereas lambda-cyhalothrin, methomyl and chlorfenapyr were of medium to low toxicity and interfered with two aspects of flight behavior evaluated here. Chlorantraniliprole was the only insecticide tested here that had no significant effect on T. spinipes survival, although it did interfere with one aspect of flight capacity. A single bee that had ingested malathion, spinosad or imidacloprid, could contaminate three, four and nineteen other bees, respectively via trophallaxis, resulting in the death of the recipients. CONCLUSION: This is the first study to evaluate the ecotoxicology of a range of insecticides that not only negatively affected T. spinipes survival, but also interfered with flight capacity, a very important aspect of pollination behavior. The toxicity of the insecticides was observed following direct ingestion and also via trophallactic exchanges between nestmates, highlighting the possibility of lethal effects of these insecticides spreading throughout the colony, reducing the survival of non-foraging individuals. © 2023 Society of Chemical Industry.


Assuntos
Himenópteros , Inseticidas , Nitrocompostos , Humanos , Abelhas , Animais , Inseticidas/toxicidade , Malation/toxicidade , Neonicotinoides/toxicidade , Ingestão de Alimentos
18.
J Am Mosq Control Assoc ; 39(4): 288-290, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38078546

RESUMO

A low odor formulation of ultra-low volume (ULV) malathion (Fyfanon EW®) mosquito adulticide was evaluated in the field for its efficacy using caged female Aedes aegypti. Cages were placed in three rows, 30 m apart at 30, 60, and 90 m from the spray line. The product was applied at the manufacturer's suggested operational rate of 0.28 liter/min (9.5 fl oz/min) and at the maximum label rate of 0.37 liter/min (12.6 fl oz/min) with a Guardian 190ES truck mounted ULV sprayer. At 1 h post-treatment for the manufacturer's suggested operational rate, adult mortality ranged from 85% at 30 m to 46% at 90 m (overall average 65.5%). At 24 h post-treatment, mortality was significantly greater at each distance with complete control of caged mosquitoes at 30 m and >95% at 90 m. Overall, 24-h average mortality at this rate was 96.8%. At the maximum label rate, mosquito mortality at 1 h was considerably greater at all distances and ranged from about 89% to 75% with an overall average of 84.3%. At 24 h post-treatment, complete mortality was recorded at all transect distances at this higher rate. In conclusion, our results showed that at 24 h, Fyfanon EW® was considered very effective when applied by ULV truck mounted ground equipment for area-wide control of mosquitoes.


Assuntos
Aedes , Inseticidas , Animais , Feminino , Malation , Odorantes , Controle de Mosquitos/métodos
19.
Pestic Biochem Physiol ; 197: 105690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072545

RESUMO

Bactrocera dorsalis is a notable invasive pest that has developed resistance to several commonly used insecticides in the field, such as avermectin, beta-cypermethrin and malathion. Investigating the mechanisms of insecticide resistance in this pest is of paramount importance for ensuring its effective control. The ATP-binding cassette transporter subfamily B (ABCB) genes, responsible for encoding transmembrane efflux transporters, represent a potential source of insecticide detoxification activity or transportation that remains largely unexplored in B. dorsalis. In this study, seven BdABCB genes were identified and comprehensive analyzed based on the latest genome and transcriptome dataset. Subsequently, we characterized the expression profiles of these genes across different development stages and tissues, as well as under different insecticide exposures. The results showed that the BdABCB genes were expressed at all stages in B. dorsalis, with BdABCB2 and BdABCB7 being highly expressed in the pupal stage, while BdABCB5 and BdABCB6 were highly expressed in the larval stage. Besides, the BdABCBs were highly expressed in the detoxification metabolic tissues. Among them, BdABCB5 and BdABCB6 were significantly overexpressed in the midgut and Malpighian tubules, respectively. Furthermore, with the exception of BdABCB6, the expression levels of the other six BdABCBs were significantly up-regulated following induction with avermectin, beta-cypermethrin and malathion. Six BdABCBs (BdABCB1-5 and BdABCB7) were knocked down by RNA interference, and the interference efficiencies were 46.58%, 39.50%, 45.60%, 33.74%, 66.37% and 63.83%, respectively. After injecting dsBdABCBs, the mortality of flies increased by 25.23% to 39.67% compared to the control upon exposure to the three insecticides. These results suggested that BdABCBs play crucial roles in the detoxification or tolerance of B. dorsalis to multiple insecticides.


Assuntos
Inseticidas , Tephritidae , Animais , Inseticidas/farmacologia , Malation/toxicidade , Tephritidae/genética , Resistência a Inseticidas/genética
20.
PLoS One ; 18(12): e0295927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134124

RESUMO

Resistance to preemergence (PRE) soil-applied herbicides, such as inhibitors of very-long-chain fatty acid (VLCFA) elongases, was documented in two waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer] populations (SIR and CHR) from Illinois, USA. To limit the spread of resistant weed populations, rapid detection measures are necessary. Soil-based resistance assays are limited by edaphic factors, application timing, variable seeding depth and rainfall amount. Therefore, cost-effective techniques mitigating effects of edaphic factors that are appropriate for small- to large-scale assays are needed. Our research goal was to identify and quantify resistance to the VLCFA-inhibiting herbicides, S-metolachlor and pyroxasulfone, using a soilless greenhouse assay. Dose-response experiments were conducted under greenhouse conditions with pre-germinated waterhemp seeds planted on the vermiculite surface, which had been saturated with S-metolachlor (0.015-15 µM), pyroxasulfone (0.0005-1.5 µM), or S-metolachlor plus the cytochrome P450 (P450) inhibitor, malathion. Lethal dose estimates of 50% (LD50) and growth reduction of 50% (GR50) were calculated for S-metolachlor and pyroxasulfone PRE and used to determine resistance indices (RI) for resistant populations (CHR and SIR) relative to sensitive populations, SEN and ACR. RI values for S-metolachlor using LD50 values calculated relative to SEN and ACR were 17.2 and 15.2 (CHR) or 11.5 and 10.1 (SIR), while RI values for pyroxasulfone using LD50 values calculated relative to SEN and ACR were 3.8 and 3.1 (CHR) or 4.8 and 3.8 (SIR). Malathion decreased the GR50 of S-metolachlor to a greater degree in CHR compared to ACR, consistent with P450 involvement in S-metolachlor resistance in CHR. Results from these soilless assays are in accord with previous findings in soil-based systems that demonstrate CHR and SIR are resistant to S-metolachlor and pyroxasulfone. This method provides an effective, reproducible alternative to soil-based systems for studying suspected PRE herbicide-resistant populations and will potentially assist in identifying non-target-site resistance mechanisms.


Assuntos
Amaranthus , Herbicidas , Herbicidas/farmacologia , Malation/farmacologia , Resistência a Herbicidas , Solo , Ácidos Graxos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...